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Multi-target normal behaviour models for wind farm condition monitoring 
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H I G H L I G H T S  

• An efficient automated approach to wind farm operation monitoring is presented. 
• Multi-target machine learning models can reduce the monitoring cost of wind farms. 
• Multi-target models largely reduce the number of required monitoring models. 
• They can match the monitoring accuracy of state-of-the-art single-target models. 
• Multi-target methods can also be beneficial to monitoring other power plant types.  

A R T I C L E  I N F O   

Keywords: 
Condition monitoring 
Fault detection 
Multi-target model 
Normal behavior modelling 
Wind turbine 

A B S T R A C T   

The trend towards larger wind turbines and remote locations of wind farms fuels the demand for automated 
condition monitoring strategies that can reduce the operating cost and avoid unplanned downtime. Normal 
behaviour modelling has been introduced to detect anomalous deviations from normal operation based on the 
turbine’s SCADA data. A growing number of machine learning models of the normal behaviour of turbine 
subsystems are being developed by wind farm managers to this end. However, these models need to be kept track 
of, be maintained and require frequent updates. This research explores multi-target models as a new approach to 
capturing a wind turbine’s normal behaviour. We present an overview of multi-target regression methods, 
motivate their application and benefits in SCADA-based wind turbine condition monitoring, and assess their 
performance in a wind farm case study. We find that multi-target models are advantageous in comparison to 
single-target modelling in that they can reduce the cost and effort of practical condition monitoring without 
compromising on the accuracy. We also outline some areas of future research.   

1. Introduction 

Wind power forms a major source of renewable energy in our energy 
systems. The operating cost of wind farms have remained relatively 
constant over the past decade, making up one quarter of the lifetime cost 
of onshore farms and one third of the offshore farm cost [1]. As the 
levelized cost of wind energy keeps falling, the relative importance of its 
operating cost continues to grow. Automated sensor-based condition 
monitoring provides powerful capabilities for detecting and diagnosing 
faults in wind turbines at an early stage of their development. Thereby, it 
facilitates informed operation and maintenance decision making of wind 
farm asset managers and cost-efficient preventive measures, in partic-
ular the scheduling and performance of condition-based maintenance 
actions. 

The operating state and conditions of modern multi-MW wind tur-
bines are being monitored with various sensor systems [2,3]. Most of the 

modern wind turbines are equipped with a supervisory control and data 
acquisition (SCADA) system which logs a multitude of operating and 
environmental state variables at regular intervals of 1–15 min, such as 
the wind speed, the generated active power and the rotor speed. Addi-
tionally, the tower, nacelle and drive train components are often 
equipped with vibration sensors which monitor the radial and axial 
vibrational motion of housings, bearings, gearbox and generator shafts 
at kHz sampling rates. Many large turbines comprise additional moni-
toring systems, for instance oil quality monitoring systems that are in-
tegrated with the gear box. 

Today’s automated wind farm monitoring and fault detection is 
facing several challenges as the fleet sizes and the abundance of oper-
ating data are growing. A major challenge comes from the large variety 
of fault types that are potentially observable in a wind farm portfolio and 
the low numbers of actually observed instances for each fault type. This 
lack of observed faults is likely to result in strong class imbalance and 
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potentially a lack of representativeness if supervised machine-learning 
based fault detection and diagnosis methods were being pursued. So 
instead, it is often more feasible to learn a representation of the turbine’s 
normal behaviour and detect relevant deviations from this behaviour. 
Note that the normal behaviour may change over time due to events like 
software updates, sensor recalibrations or part replacements, or due to 
slow processes for instance in relation to normal ageing. 

A second challenge is related to the large volume and variety of data 
collected from hundreds of sensor systems in every turbine. Methods are 
required that can efficiently analyse the collected data and also deal 
with different sampling rates ranging from sub-Hertz to kHz rates. In 
practice, wind farm managers have started to develop a growing number 
of statistical and machine learning models that describe the normal 
behaviour of specific turbine subsystems. This may include, for instance, 
a model of the temperature behaviour of a main bearing component, a 
second model of the generated active power, and so forth. All of these 
models need to be kept track of, be maintained and updated when 
required. The same applies to any related threshold values for detecting 
deviations from the normal operating behaviour. Therefore, each addi-
tional normal behaviour model increases the effort for the asset man-
agers. This study is the first, to the best of our knowledge, to discuss this 
challenge and to propose and benchmark multi-target normal behaviour 
models for addressing them for low-frequency SCADA system data. 

A growing body of literature studies and compares data-driven 
methods for monitoring wind turbines and their subsystems based on 
models of the turbines’ normal operating behaviour. These methods rely 
on modelling the single target variable of interest as a function of input 
variables like the wind speed. Single-target models constitute the state of 
the art in the SCADA-based condition monitoring of wind turbines [4,5]. 
For instance, single-target models of the turbine’s active power gener-
ation were proposed and studied in [6–14] for monitoring the operating 
performance. Single-target models of component temperatures have also 
become common in fault detection applications [15–22]. For instance, 
models of the generator temperature [17] and of the gearbox tempera-
ture [16,21] were presented for the detection of incipient fault processes 
in these subsystems. A normal behaviour model of the gearbox lubricant 
pressure was developed in [22]. More recently, comprehensive reviews 
of SCADA-based normal behaviour modelling of wind turbines have 
been provided [4,5]. 

The literature has focused on modelling the normal behaviour of 
single target quantities. However, it is desirable for asset managers to 
monitor as many critical turbine subsystems as is practically feasible and 
cost-efficient for them – and to do so for all of the turbine types and 
configurations in their portfolio. Especially in large portfolios, but even 
for single wind turbines, the state-of-the-art single-target monitoring 
approach quickly results in hundreds and thousands of separate single- 
target models and threshold values, which need to be maintained, 
updated and kept track of. This considerable practical challenge has 
neither been discussed nor addressed in the literature so far. The present 
study aims to close this gap by introducing multi-target machine- 
learning models of the turbine normal behaviour and comparing their 
performance to single-target models and across model types based on 
minute-scale SCADA data. 

Multi-target models are established techniques in the fields of 
applied statistics and machine learning [23–25]. Their application in 
wind turbine (WT) condition monitoring is novel in view of the state of 
research in this field [4,5]. Thus, the aim of this work is to study and 
benchmark multi-target machine learning models as a new approach to 
capturing a wind turbine’s normal behaviour. A low prediction error in 
times of normal behaviour is a necessary requirement of normal 
behaviour models. A focus of this study is to evaluate and compare the 
prediction errors of different model architectures in times of normal 
operation. We benchmark six multi-target regression models trained 
with deep neural networks and with classical machine learning algo-
rithms on the multivariate SCADA time series data provided by nine 
onshore wind turbines situated in continental Europe. The performance 

of the multi-target models is then compared to that of common single- 
target turbine models. We investigate if the multi-target models’ pre-
dictive performance improves by taking also past observations into ac-
count in addition to same-time observations. Moreover, we study 
whether deep neural networks outperform other machine learning 
models based on the SCADA observations. 

This paper is organized as follows. Section 2 describes the state of 
research in normal behaviour modelling for WT condition monitoring. 
Section 3 introduces multi-target models and how an example single- 
target regression algorithm can be generalized for multiple outputs. 
The data sources, algorithms, model training and testing are outlined in 
Section 4. Section 5 presents the results of the analysis. Conclusions and 
possible future work are presented in the final Section 6. 

2. Normal behaviour modelling in wind turbine condition 
monitoring 

Normal behaviour models describe the normal fault-free operation 
behaviour that is expected under the observed operating and environ-
mental conditions. Given these conditions, normal behaviour models 
describe the state of a particular subsystem, such as the temperature of a 
drive train component. The residuals of the expected and the actually 
measured state of the component are computed to identify unusual 
operating states. Deviations from the normal behaviour including 
underperformance and faults can then be detected based on the statis-
tical distribution of the residuals. Deviations can have a multitude of 
causes, including component operation faults, component damage, 
control faults, incorrect control settings, and sensor malfunction. 
Normal behaviour models have been built for active power monitoring 
[6–14] and for various subsystems and components of wind turbines. 
For instance, the operating behaviour of the generator temperature 
[16,26], the gearbox temperature [16,21], the gearbox lubricant pres-
sure [22] and the tower top motion [27] have been modelled for the 
detection of incipient fault processes in these subsystems. The authors of 
[11] presented a wind turbine monitoring system with a comprehensive 
set of 45 single-target models for monitoring various turbine sub-
systems. Recent reviews of SCADA-based normal behaviour modelling in 
wind turbine monitoring are given in [4,5]. 

3. Multi-target regression models 

The usage of characteristic operating curves and single-target 
regression models in condition monitoring has been presented and 
demonstrated. In operation, this approach involves repeatedly esti-
mating the parameters of multiple single-target models independently 
for each model, and then running and maintaining all models concur-
rently. For a given turbine and wind farm, this approach can lead to a 
large number of distinct and unrelated models. All of these models and 
any associated threshold values need to be maintained and kept up to 
date. In contrast, a multi-target model can predict a large number of 
target variables simultaneously and thereby significantly reduce the 
model lifecycle effort. 

A turbine’s set of normal states can be represented as a hyperplane in 
a high-dimensional state space. It can be parameterized by the envi-
ronmental variables, in particular the wind speed at rotor height. If a 
single input variable is used to parameterize it, the hyperplane takes the 
shape of a line (Fig. 1). When estimating multiple single-target regres-
sion models, the hyperplane (black, Fig. 1) is projected into low- 
dimensional subspaces of the turbine’s state space (light gray and dark 
gray lines, Fig. 1), and a separate regression model is estimated for each 
of these subspaces. This results in multiple independent models each of 
which provides only a partial description of the turbine’s normal state. 

Single-target regression models predict a single continuous real- 
valued target variable y, given at least one input variable X. A tur-
bine’s active power, for instance, may be estimated as a function of the 
wind speed or, in a multivariate model, as a function of several input 
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variables such as wind speed, wind direction and air temperature [14]. 
In contrast, given at least one input variable X, a multi-target 

regression model predicts multiple continuous real-valued target vari-
ables y1 , … yn simultaneously. For instance, a multi-target model may 
predict both the active power and the rotor speed at once as a function of 
the wind speed (Fig. 1, black curve). An alternative approach to pre-
dicting multiple target variables is to estimate an independent single- 
target regression model for each target variable. In the previous 
example, the active power and the rotor speed would each be predicted 
independently from each other as a function of the wind speed. 

Condition monitoring data from wind farms are subject to phe-
nomena like noise, erroneous sensor signals, numerous correlated input 
and target variables, and incomplete or missing data. Multi-target 
regression models may be capable of yielding more accurate pre-
dictions in such situations by utilizing the covariance of the target var-
iables according to studies in other fields [29]. Reviews of multi-target 
learning and specifically multi-target regression algorithms are provided 
by the authors of [23–25]. It has been demonstrated that multi-target 
models may provide more accurate representations by utilizing the 
target variables’ covariance, and that they may be less prone to over-
fitting than single-target models [29,30,31,23]. 

A multi-target regression model is a function approximator that es-
timates a map f : Rk→Rn based on a training set {(x1,i, … xk,i,y1,i, … yn,i), 
i = 1,⋯,m } where m is the training set size. The parameters of statis-
tical and machine learning models are estimated by optimizing a loss 
function. For regression tasks, a common loss function is the sum of 

squared residuals, SSR =
∑m

i=1

(
ypred

i − yobs
i

)2
. In a multi-target context, 

it can be generalized to SSR =
∑

i,j

(
ypred

i,j − yobs
i,j

)2 
where j indexes the n 

target variables y1 , … yn . Typically, the residuals of all n target di-
mensions are assigned the same weight in the SSR, so it can be beneficial 
to normalize the input variables before training the model. 

For illustration, we outline an example of how single-target algo-
rithms have been adapted to multi-target tasks, using the case of deci-
sion tree algorithms. Single-target decision trees [32] solve regression 
tasks by iteratively splitting the training set. Each split is performed so as 
to maximize the similarity of the data points in the obtained nodes. To 
this end, the split value in split iteration l is typically estimated by 
minimizing the weighted sum of squared deviations Jsingle

l =

∑
i,j

mj
m1+m2

(
ypred

i,j − ymean
j

)2 
over the two nodes which result from the split. 

The nodes are indexed by j = 1,2 in this equation, i runs over all mj 

elements in node j, and ymean
j denotes the mean value of the regressand 

variable computed over the elements of node j. This single-target algo-
rithm [32] has been generalized to a multi-target one in [33] by 

summing over all n target dimensions in the loss function, Jmulti
l =

∑
i,j,p

mj
m1+m2

(
ypred

i,j,p − ymean
j,p

)2 
where p = 1,⋯,n. 

Generalizations to multi-target predictions have also been accom-
plished for other regression algorithms including random forests, K 
nearest neighbours, and artificial neural network algorithms. In the 
following sections, we are studying and benchmarking multi-target 
representations for the normal behaviour modelling of wind turbines. 

4. Model training 

4.1. Condition monitoring data 

One year of SCADA data from nine onshore wind turbines was used 
to train the multi-target models studied in this work. The results are 
presented based on one of the turbines’ SCADA data and have been 
confirmed with the SCADA data of eight further turbines. The presented 
turbine was randomly selected from among the nine available turbines. 
Its location and the observation time period are not disclosed and the 
data was anonymized in order to preserve the privacy of the wind tur-
bine owners. All of the nine turbines are a three-bladed variable-speed 
horizontal-axis model that is gearbox operated and pitch regulated. It is 
equipped with a SCADA system that provides mean values of operation 
and environmental state variables at 10-minute intervals. Table 1 details 
its technical specifications. 

The 10-minute average wind speed and wind direction measured at 
nacelle height are utilized as regressors for the model training, valida-
tion and testing. The wind speed measured at nacelle height is the most 
important input variable for predicting the target variables presented in 
Table 2. The wind direction is included to account for any topographic 
and wake effects upstream of the rotor. The models are trained to predict 
four target variables whose normal behaviour is affected by the oper-
ating conditions: the active power generated by the respective turbine, 
the rotor speed, the generator speed and the generated current at 10- 
minute mean values. 

The wind direction was transformed into a cyclical function by a 
cosine transformation in order to avoid discontinuities when the wind 
direction crosses between 360◦ to 1◦. Fig. 2 presents a sample of the 
input and target data prior to normalization. 

4.2. Algorithms and model architectures 

The multi-target models take the form y1 , …, y4 ∼ x1 + x2 

wherein x1, x2 are the wind speed and direction, and where y1 , … y4 are 
the active power, rotor and generator rotational velocity and current, 
respectively. The single-target models have the form yi ∼ x1 + x2, i =

1,⋯,4. The predictive performance of the native multi-target regression 
models shown in Table 3 was studied. The models comprise standard 
densely connected feed-forward neural networks also called multilayer 
perceptrons (MLP), convolutional neural networks (CNN) and long 
short-term memory networks (LSTM). MLPs and CNNs are feed-forward 
neural networks which feed and transform data in one direction from 
input to target variables. The CNNs are composed of convolutional 
feature extraction layers followed by a fully connected multi-target 

Fig. 1. Turbine state space with projected power and rotor speed curves.  

Table 1 
Technical specifications of the turbine model.  

Quantity Value 

Rated power 3.3 MW 
Hub height 84 m 
Rotor diameter 112 m 
Cut-in wind speed 3 m/s 
Rated wind speed 13 m/s 
Cut-out wind speed 25 m/s 
Gearbox 3-stage planetary/helical  
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regressor network. Unlike MLPs, CNNs filter and pool the input data to 
distill features from it before passing on the transformed data to the fully 
connected layers for training. The filtering is performed with a set of 
convolutional filters. CNNs do not require feature engineering and can 
learn time invariant features by iterative convolution and 
backpropagation. 

CNNs and LSTMs make predictions based on a sequence of past and 
present observations, whereas the tree-based, KNN and the MLP models 
predict the target time series valuesy1,i, … yn,i based on same-time input 
x1,i, … xk,i. In this study, the input time series are fed to the CNN from a 
trailing window. LSTMs are a recurrent neural network architecture that 
accepts sequences of input data and passes the data internally from one 
time step to the next. Random forest is a tree-based ensemble algorithm 
in which individual trees are combined to achieve a higher predictive 
performance for the resulting model. The KNN regression predicts the 
target variables based on the target values of the nearest neighbours 
inputs. 

A common modelling framework was developed for this study in 
order to enable a fair comparison of the algorithms. Six regression model 
types were trained and tested for single and multiple target variables. 
The resulting final architectures and hyperparameters are summarized 
in Tables 3 and 4. The model architectures were built and adapted so as 

to achieve high training and validation set accuracies. The hyper-
parameter selection was performed based on a grid search approach for 
all models except the artificial neural networks (ANNs). For the ANNs, a 
heuristic hyperparameter selection process was employed by iteratively 
setting the number of layers and neurons in each layer to obtain a low 
prediction error on the validation set. The model complexity and thus 
the number of tunable model parameters was increased only if this 
provided an increase in prediction accuracy. 

For both the multi- and the single-target MLPs, the training process 
involved the following steps: First, models with a single hidden layer 
were trained with the number of hidden nodes between 2 and 20. We 
found that higher accuracies (RMSE) on the training and validation sets 
could be achieved with two hidden layers rather than one. During the 
training, the convergence was monitored in terms of the reduction in 
validation loss. The RMSE was computed for all MLPs with two hidden 
layers with s nodes in the first layer and p nodes in the second hidden 
layer for all combinations (s, p) with s,p = 2,⋯,20. The two models with 
the lowest RMSE were selected from among the resulting models, and a 
third hidden layer with q nodes was added to each of them. For these 
three-layer models, the RMSE was computed for all q = 2,⋯, 20 nodes. 
The resulting three-layer model m* with the lowest RMSE was selected. 
A fourth layer with t = 2,⋯,20 hidden nodes was added but this did not 
increase the accuracy any further. Thus, the three-layer model m* was 
chosen as the final model, detailed in Tables 3 and 4. For the multi-target 
MLPs, the RMSE was computed as the sum of residuals over all four 
target variables during the training and validation. The training process 
was stopped early when no increase in accuracy was achieved on the 
validation set for three training epochs in a row. The training process 
converged to reach maximum validation set accuracy within 10–39 
training epochs for the ANNs. To facilitate a robust and fast hyper-
parameter search, the hidden unit values of the ANNs were normalized 
by batch normalization [39]. The Adaptive Moment Estimation (Adam) 
optimizer was applied [40]. The training of the multi- and single-target 
CNNs started from a first convolutional layer of k = 8, 16,32,64 filters. 
The validation set accuracy increased when a second convolutional layer 
was added. The accuracy of the CNN with two convolutional layers was 
computed for all combinations of (k,m) with k,m = 8,16,32,64 filters in 
the first and second convolutional layers. Adding a third convolutional 
layer did not increase the accuracy further. A corresponding strategy 
was adopted for the LSTM hyperparameter optimization. The optimal 
number of filters, kernel sizes and input lengths for the CNN and LSTM 
was obtained by a grid search optimization in which models were esti-
mated in turn with parameter combinations along the grid spanned by 
the parameters. The parameter combination that resulted in the highest 
validation-set accuracy was selected for the final model. A grid search 
optimization was also performed in the case of the random forest algo-
rithms for the number of trees in the forest, the maximum depth of the 
trees, the minimum number of observations needed to split a node, and 
the minimum number of observations in each leaf. In the case of the KNN 
algorithm, KNN models were fit and validated for all odd numbers of 
nearest neighbours up to 101. 

Table 2 
Input and target variables.  

Input variables Target variables 

Wind speed [m/s] Active power [kW] 
Wind direction [rad] Rotor speed [rpm]  

Generator speed [rpm]  
Current [A]  

Fig. 2. Input and target variables over a period of ten days of the training set. 
Wind direction is provided dimensionless after cosine transformation. The units 
of the remaining variables are provided in Table 2. 

Table 3 
Multi-target model architectures.  

Model Architecture 

Decision tree  
[32] 

Maximum tree depth is 7, minimum number of samples at split is 
105, minimum number of samples in leaf is 28. 

Random forest  
[34] 

Forest of 150 trees, maximum tree depth is 7, minimum number 
of samples at split is 120, minimum number of samples in leaf is 
30. 

KNN [35] K = 45 nearest neighbours. 
MLP [36] Three dense hidden layers with 17, 8, and 17 neurons, a 4-node 

output layer. 
CNN [37] A convolutional layer with 16 filters and kernel length of 5, 

followed by a max pooling layer with window size 2 and a second 
convolutional layer with 16 filters, followed by a dense layer of 
10 fully connected nodes and a 4-node output layer. 

LSTM [38] Three hidden layers with 16, 32, and 16 neurons, respectively.  

Table 4 
Single-target model architectures.  

Model Architecture 

Decision tree  
[32] 

Maximum tree depth is 9, minimum number of samples at split is 
80, minimum number of samples in leaf is 28. 

Random forest  
[34] 

Forest of 150 trees, maximum tree depth is 9, minimum number 
of samples at split is 90, minimum number of samples in leaf is 30. 

KNN [35] K = 33 nearest neighbours. 
MLP [36] Three dense hidden layers with 17, 14, and 17 neurons. 
CNN [37] A convolutional layer with 16 filters and kernel length of 5, 

followed by a max pooling layer with window size 2 and a second 
convolutional layer with 16 filters, followed by a dense layer of 
16 fully connected nodes. 

LSTM [38] Three hidden layers with 32 neurons each.  
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5. Model analysis 

All input and target variables were normalized before training the 
models. This facilitated rendering the loss function more symmetric and 
thereby enable a fast minimization. We normalized the target variables 
to prevent the predictions from getting dominated by those target var-
iables which take the largest absolute values, as this would be at the 
expense of the remaining target variables’ prediction accuracy. The 
turbine data was split into training, validation and test sets with a 60% −
20% − 20% split ratio. 

For the CNNs we found that 16 filters in the first two convolutional 
layers resulted in the highest validation set accuracy and outperformed 
models with even larger numbers of filters. Adding more convolutional 
layers did not improve the validation set accuracy. The accuracy was 
found to be weakly sensitive to the convolutional kernel size. A kernel 
window of size 5 was found optimal. The prediction accuracy also 
weakly depended on the length of the time series sequence input to the 
first convolutional layer. An input length of 20 time steps resulted in the 
highest validation set prediction accuracy. So the CNN’s predictions of 
y1,i, … yn,i were most accurate when the CNN was trained on a history of 
3 h of SCADA data {(x1,i, … xk,i), i = t − 19,⋯, t}. The same length of 
input training data sequences also provided the most accurate pre-
dictions in the case of the LSTM. 

One might expect that the multi-target models usually have more 
complex architectures than the single-target models. We found that this 
is not always the case. For instance, the MLP’s second hidden layer 
comprises 8 neurons in the multi-target MLP and 14 neurons in the 
single-target case. This might be due to the correlation of the target 
variables which is leveraged so that fewer parameters suffice to 
approximate the mapping at highest possible overall accuracy. Howev-
er, a clear attribution is difficult to provide due to the black box nature of 
the model. 

To test the performance of the normal behaviour models, the mean 
squared error computed from the predicted and actual target time series 
was evaluated on the test set. A multi-target model’s accuracy of pre-
dicting a particular target variable yi can be expressed by the mean 
squared error, or likewise its root (RMSE), of the prediction ypred

i with 

regard to the observed instances yobs
i of the target variable, MSE

(
ypred

i ,

yobs
i

)
= 1

s
∑s

i=1

(
ypred

i − yobs
i

)2
, where sdenotes the size of the test set. A 

multi-target model’s global root mean squared error is the mean squared 
error over all instances of all target variables. 

The six models featured similar levels of prediction accuracy on the 
test set. As shown in Table 5, the tree-based and neighbour-based models 
exhibited the highest prediction accuracies from among the six model 
types. The neural network models produced somewhat larger but 
acceptable global RMSEs in describing the turbine’s normal behaviour. 
With regard to individual target variables, the rotor speed and the 
generator speed were associated with the lowest prediction errors by all 
six models. 

While the ANN models performed somewhat worse than the tree- 
based and KNN models, the convolutional neural network exhibited 

the largest prediction errors amongst the models in this case study. Fig. 3 
illustrates the predicted and observed values of the normalized target 
variables. It is confirmed that all six normal behaviour models perform 
reasonably accurately and that they demonstrate comparable predictive 
performance. As seen in Fig. 3, most of the predicted and observed 
values lie on the 45◦ line. 

In Fig. 3, some lower rotor and generator speed values exhibit 
increased prediction errors. These may possibly be further reduced by 
considering additional explanatory variables or even by oversampling 
from the lower rotor and generator speed values as they are underrep-
resented in the left-skewed distributions of rotor and generator speeds. 
However, this is not the focus of the present study. 

The tree-based and KNN models demonstrated the highest accuracy 
among all trained normal behaviour multi-target models. In alignment 
with the low RMSE values, the quantile-quantile comparison of pre-
dicted and observed target values indicated a high goodness of fit on the 
test set for each of the six models. Unlike the other models, the ANNs 
exhibited some difficulty in accurately predicting tails of the distribu-
tions. They tended to somewhat overestimated the upper tails of the 
power and current distributions, as indicated in Figs. 3 and 4 for the case 
of the CNN. 

These difficulties may be related to the fact that the training data is 
not balanced, as illustrated in Fig. 5, which is due to the distribution of 
wind speeds and wind directions as observed at the turbine site. 
Regression models that have been trained to minimize the overall error, 
like the artificial neural network models, can be sensitive to unbalanced 
data. 

Finally, we compared the performance of the trained multi-target 
models to that of the single-target models, which are more commonly 
used for modelling the normal behaviour of wind turbines. To this end, 
the active power y1 was arbitrarily selected from the set of four target 
variables. The architectures of the trained active power models y1 ∼

x1 + x2 that provided the highest prediction accuracies are described in 
Table 4. It was found that the multi-target models provided the same 
level of prediction accuracy as the single-target models, as illustrated in 

Table 5 
Accuracies of the multi-target models on the test set.  

Model Global 
RMSE 

Power Rotor 
speed 

Generator 
speed 

Current 

Decision 
tree 

0.13 0.13 0.10 0.10 0.18 

Random 
forest 

0.13 0.13 0.10 0.10 0.17 

KNN 0.13 0.13 0.11 0.10 0.18 
MLP 0.14 0.15 0.11 0.11 0.19 
CNN 0.15 0.16 0.12 0.11 0.20 
LSTM 0.14 0.13 0.11 0.11 0.18  

Fig. 3. Distributions of predicted and observed values of the normalized target 
variables for the test dataset. Each row shows the four target variables (active 
power, rotor speed, generator speed, current) as observed and as predicted by 
one of the six multi-target models. Decision tree (DT), random forest (RF), KNN, 
MLP, CNN and LSTM with model architectures provided in Table 3. The colors 
indicate the number of observations (dimensionless) in the respective bins of 
the 2D histograms. 
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Table 6. This makes multi-target models a convenient alternative for 
reducing the number of models required to describe a turbine’s normal 
behaviour and for thereby lowering the associated model lifecycle 
management effort, without compromising on the representation 
accuracy. 

We also compared the computing time required for training the 
models described in Tables 3 and 4. The training was performed on an 
AMD EPYC 7B12 2.25 GHz processor. As shown in Table 7, training 
regression models with multiple target variables did not create a sig-
nificant increase in model training time in the case of highly covariant 
target variables while an increase in training time was observed for four 
of six models in a low-covariance case presented below. In all cases, the 

neural network models required the longest training times, the LSTM 
models being the most compute-intensive. 

The proposed multi-target approach does not require the target 
variables to be independent from each other. In this case study, the rotor 
speed and the generator speed were selected to be among the four target 
variables. They are closely coupled via the gearbox ratio and not linearly 
independent. We find that the multi-target models predict both the rotor 
speed and the generator speed with similar and relatively high accuracy 
(Fig. 3). In doing so, the models implicitly estimate the gearbox ratio 
from the SCADA data. 

In the case discussed above, the target variables (Table 2) are 
significantly correlated with the wind speed and with each other. We 
repeated the analysis with a set of target variables that exhibit signifi-
cantly lower correlation with the wind speed and amongst each other. A 
normal behavior model of the hydraulic oil temperature was trained to 
this end based on 10-minute mean wind speed, wind direction and air 
temperature from nacelle-mounted meteorological sensors. In the multi- 
target model, the gear bearing temperature and the nacelle temperature 
were predicted in addition to the hydraulic oil temperature (Table 8). 
The target variables were chosen from the available SCADA variables for 
their comparatively low covariance (Pearson correlation coefficients 
between 0.5 and 0.6). The model architectures, prediction accuracies 
and the training times of the single- and multi-target models are shown 
in Tables 9–13. We found also for this case of relatively weakly corre-
lated target variables that the multi-target models can achieve similar 
accuracy as the respective single-target models in predicting the target 
variable of interest, in this case the hydraulic oil temperature. The multi- 
target ANNs even tended to somewhat outperform their single-target 
counterparts (Tables 11 and 12). This suggests that, starting from a 
single-target normal operation model, adding additional target variables 
to the model can even increase the accuracy in the target variable of 
interest because the multi-target model can exploit correlations among 
the target variables [45]. 

A major advantage of the presented data-driven approach over a 
formula-based monitoring is that the data-driven multi-target approach 
does not required any knowledge or upfront estimation of the formula 
parameters (such as the gearbox ratio in the presented case study) and 
thereby is more easily transferable among different turbine types and 
configurations. Moreover, unlike formulas, the presented data-driven 
approach intrinsically accounts for turbine- and site-specific effects 
such as topographic or wake effects, and can even deal with input from 
miscalibrated sensors as long as the miscalibration is stable in time. 

Fig. 4. One month of observed and predicted normalized target variables. 
Unlike the tree-based models, the CNN overestimates the peak power and 
current values. The variables are dimensionless due to normalization. 

Fig. 5. Density distributions of input and target variables in the training set. 
The variables are dimensionless due to normalization. 

Table 6 
Accuracy of the single-target power model on the 
test set.  

Model RMSE 

Decision tree 0.13 
Random forest 0.13 
KNN 0.13 
MLP 0.14 
CNN 0.16 
LSTM 0.13  

Table 7 
Time in seconds required for training a model on an AMD EPYC 7B12 2.25 GHz 
processor. The number of training epochs is provided in parentheses for the 
neural network models. It indicates the number of epochs after which the 
training is stopped as the model performance stopped improving three times in a 
row on the validation set.  

Model Multi-target Single-target 

Decision tree 0.05 0.05 
Random forest 4.0 4.1 
KNN 0.02 0.02 
MLP 4.9 (23) 4.5 (16) 
CNN 24.9 (34) 27.5 (39) 
LSTM 55.8 (10) 108.4 (18)  

Table 8 
Input and target variables of the multi-target model in the low-correlation 
case.  

Input variables Target variables 

Wind speed [m/s] Hydraulic oil temperature [K] 
Wind direction [rad] Nacelle temperature [K] 
Air temperature [K] Gear bearing temperature [K]  
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6. Conclusions and future work 

This study explored the potential of multi-target machine learning 
models for describing and monitoring the normal operation behaviour of 
wind turbines based on SCADA data. The proposed approach supports a 
simultaneous monitoring of multiple state variables at once with a single 
(multi-target) model. One year of SCADA data from nine onshore tur-
bines located in Europe was used to this end. Neural networks, decision 
trees and neighbour-based models were analysed. It was found that all 
investigated model types demonstrated reasonably low prediction errors 
in times of normal operation, as required for use in performance 
monitoring or fault detection tasks. The study showed that the models 
accomplished a similar level of prediction accuracy. The neural network 
models showed a tendency to overestimate the upper tails of the target 
distributions for some of the target variables. 

The neural network models provided similar predictive performance 
as the other explored machine learning models. Moreover, the model 
training and optimization process demonstrated that deep neural net-
works with a larger number of hidden layers did not outperform the 
relatively shallow network architectures or the other models of this 
study. The multi-target models achieved at least the same predictive 
performance as the more commonly used single-target models. Inter-
estingly, we also found that in the case of strongly correlated target 
variables the models which take a history of past observations as input – 
the LSTM and CNN models – did not outperform the models that accept 
only same-time observations input. Also, their prediction accuracy did 
not improve by taking a long history of past observations into account. 
This may be due to the fact that the input and target variables chosen for 
this study are strongly correlated, so same-time values of 10-minute 
mean wind speed and wind direction can be sufficient predictors. 

The present study indicates that multi-target normal behaviour 
models are advantageous in comparison to state-of-the-art single-target 
models. Multi-target methods reduce the number of independent models 
required to monitor a turbine. Thereby, they facilitate a lower model 
training and handling effort. This allows to free up time in the wind farm 
asset management, without compromising on the model accuracy. 

Normal behaviour modelling (NBM) of WTs has been studied for 
more than a decade following its introduction by [41] in 2009. Since 
then, dozens, and perhaps hundreds, of studies have been published on 
SCADA-based NBM and its application in SCADA-based fault detection 
[4,5]. All of this work has focused on the modelling and monitoring of 
single state variables, such as the active power generation or the 
generator temperature. 

However, this single-target approach scales linearly with the number 
of monitored SCADA channels in a real operational setting: If an oper-
ator wants to monitor n state variables in one of her WTs, she will need 
to make use of an ensemble of n single-target models according to the 
state of the art. Moreover, each single-target model is typically esti-
mated to describe the normal behaviour of one particular state variable 
for one particular WT. This means that the operator will need to develop 
n*m separate single-target models in order to monitor her wind farm of 
m turbines. In contrast, only m models would be required for the same 
task based on the multi-target approach presented in this study. When 
used in an operational context, the single-target approach quickly leads 
to tens of thousands of single-target regression models which all need to 
be trained, validated, tested, run, updated and looked after in the IT 
infrastructure of the operator’s remote monitoring center. The single- 
target approach requires more complex automation software to run in 
her monitoring center. The increased software complexity makes it more 
error prone and requires higher software testing effort whenever the 
machine learning automation software is updated. In addition, more 
person-hours are needed at the center and more storage space is required 
to build and maintain all of these single-target models. 

Two potential advantages of multi-target NBM (that have thus far not 
been confirmed yet in WT condition monitoring) are an expected higher 
accuracy of multi-target models and an improved interpretability that 

Table 9 
Multi-target model architectures in the low-correlation case.  

Model Architecture 

Decision tree  
[32] 

Maximum tree depth is 12, minimum number of samples at split 
is 20, minimum number of samples in leaf is 24. 

Random forest  
[34] 

Forest of 200 trees, maximum tree depth is 12, minimum number 
of samples at split is 80, minimum number of samples in leaf is 40. 

KNN [35] K = 11 nearest neighbours. 
MLP [36] Two dense hidden layers with 3 and 9 neurons, and a 3-node 

output layer. 
CNN [37] A convolutional layer with 16 filters and kernel length of 5, 

followed by a max pooling layer with window size 2 and a 4-node 
output layer. 

LSTM [38] Two hidden layers with 16 and 8 neurons, respectively.  

Table 10 
Single-target model architectures for the hydraulic oil temperature model.  

Model Architecture 

Decision tree  
[32] 

Maximum tree depth is 8, minimum number of samples at split is 
20, minimum number of samples in leaf is 24. 

Random forest  
[34] 

Forest of 100 trees, maximum tree depth is 12, minimum number 
of samples at split is 8, minimum number of samples in leaf is 40. 

KNN [35] K = 11 nearest neighbours. 
MLP [36] Two dense hidden layers with 5 and 8 neurons. 
CNN [37] A convolutional layer with 16 filters and kernel length of 10, 

followed by a max pooling layer with window size 2, at step size 
20. 

LSTM [38] One hidden layer with 16 neurons.  

Table 11 
Accuracies of the multi-target models on the test set.  

Model Global 
RMSE 

Hydraulic oil 
temp. 

Spinner 
temp. 

Gear bearing 
temperature 

Decision 
tree 

0.71 0.88 0.65 0.57 

Random 
forest 

0.67 0.82 0.63 0.52 

KNN 0.66 0.8 0.6 0.58 
MLP 0.60 0.71 0.53 0.54 
CNN 0.53 0.7 0.48 0.34 
LSTM 0.51 0.67 0.47 0.33  

Table 12 
Accuracy of the single-target models of the hy-
draulic oil temperature on the test set.  

Model RMSE 

Decision tree 0.83 
Random forest 0.81 
KNN 0.8 
MLP 0.71 
CNN 0.72 
LSTM 0.74  

Table 13 
Time in seconds required for training a model on an AMD EPYC 7B12 2.25 GHz 
processor.  

Model Multi-target Single-target 

Decision tree 0.049 0.041 
Random forest 6.4 3.1 
KNN 0.02 0.02 
MLP 4.45 0.61 
CNN 6.01 4.3 
LSTM 57.14 19.96  
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have been reported in other fields [30,42–45]. In the second presented 
case of the hydraulic oil temperature, we indeed found that some of the 
multi-target models could achieve a somewhat higher prediction accu-
racy than their single-target counterparts. These advantages were 
attributed to the multi-target models’ capability of capturing de-
pendencies between the target variables. The present study found that 
multi- and single-target models have a similar accuracy, and did not 
investigate questions related to model interpretability. The accuracy of 
NBM is particularly important because it determines the delay with 
which underperformance and incipient faults can be detected. There-
fore, more studies are needed to investigate, in particular, if and under 
which circumstances multi-target models may provide a higher accuracy 
in the context of NBM for performance monitoring and for fault detec-
tion tasks in WT compared to ensembles of single-target models. 

Our results are promising and may serve as a basis for future studies 
to further elucidate the potential of multi-target models in the condition 
monitoring of wind turbines. Future work will need to be performed to 
explore additional research questions in need of further investigation, 
such as: How can optimal combinations of input and target variables be 
characterized and identified? What is the potential of multi-target 
models for fault detection and diagnosis tasks? Under which circum-
stances can these models achieve prediction accuracies superior to 
single-target models in wind turbine condition monitoring? How do 
multi-target models perform for large numbers of target variables, such 
as hundreds or even thousands of channels retrieved from a SCADA 
system? How can one characterize the potential of multi-target models 
in the analysis and modelling of high frequency data, in particular vi-
bration measurements of the turbine drive train and tower top 
acceleration? 

Moreover, more research is needed to identify potential sets of 
SCADA variables that will benefit from more accurate prediction based 
on a multi-target prediction as compared to single-target models. A 
target variable y benefits if its joint prediction with one or multiple other 
target variables y’ results in a higher predictive accuracy of y than a 
single-target prediction of y. It will also be beneficial to investigate 
which sets of complementary target variables y’ will increase the pre-
diction accuracy of y and which sets have no accuracy-increasing effect. 
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